Conclusion

In software development there are many real-
world problems with solutions that are facili-
tated by measuring the right things at the right
time in the process. Process-improvement pro-
grams need to include measurement not only
as the means for identifying the areas for
improvement but also as the means to deter-
mine progress against improvement goals. If
you are responsible for a measurement program
or process-improvement program, the first thing
you need to do is determine what problems
need solving the most, and then start measuring.

The problems presented here are by far, not
inclusive of all the challenges you are taking
on with your improvement program. Chances
are really good if you are just starting out with
measurement and process improvement, that
some of these problems are on your list. And
the measurements and metrics presented here
will not offer completely comprehensive solu-
tions to these problems — they are presented
as good starting points.

Once you get comfortable with the role of
measurement in your processes, you will begin

r

by Stan Rifkin

Over the years, | have devel-
oped a checklist for selecting
automated tools to perform
macro software project estimates. Mine is
similar, though not identical, to Robert Park’s
Checklists and Criteria for Evaluating the Cost
and Schedule Estimating Capabilities of
Software Organizations (SEI-95-SR-005,
January 1995).

There is a zeroth item, one before selecting
and evaluating an estimation tool: establish
your project commitment process and then the
part within that that focuses on estimation.
Park, formerly at the Software Engineering
Institute (SEI), has written a number of SEI
technical and special reports on the subject of
estimation processes, and [recommend the
reader to them. The reports are available for
free on SEI’s Web site (www.sei.cmu.edu/
publications/) and are cited at the end of this
article.

IT METRICS

STRATEGIES

to identify other measurements that will help
these processes and your organization mature.

About the Author

Arlene Minkiewicz is the chief scientist at
Price Systems LLC. In this role, she is respon-
sible for the research and analysis necessary to
keep the Price Estimating Suite responsive to
current cost trends. She has more than 15
years of experience with Price, designing and
implementing cost models. Prior to her cur-
rent assignment, Ms. Minkiewicz functioned
as the lead of the Product Enhancement team
with responsibility for the maintenance and
enhancement of all the Price products. She
speaks frequently on software measurement
and estimating and has published articles in
Software Development magazine and the
British Software Review. Ms. Minkiewicz has
a BS in electrical engineering from Lehigh
University and an MS in computer science
from Drexel University. She is a member of
the International Society of Parametric
Analysts and International Function Point
Users Group.

How to Select Software Project
Macro-Estimation Tools

Park’s Fig. 5-1 (shown here in Figure 4) in
Software Cost and Schedule Estimating: A
Process Improvement Initiative (SEI-94-SR-03,
May 1994) is one of the most-cited examples
of an overall software macro-estimating
process.

Basically, for the estimation process to support
a commitment process, the following has to
happen:

m Commitments have to be based on the
work to be performed; therefore, there
must be agreement on this.

m Estimates have to be based on (a) the work
to be performed and (b) historical records
of performance.

m Commitments must not exceed the capabil-
ity to perform or else there is no reason to
estimate.

© 2000 Cutter Information Corp. For subscriptions call +1 800 964 5118 or +1 781 641 5118 13

http://www.cutter.com/consortium/

[T M

EIRIGS

STRATEGIES

'

Observed costs and
Completed schedules »| Inverse model Postmortem
projects execution analysis
Project Parameter, l
o) values ;
descriptions Knowledde Candidate Performance
Acaui 't'g producer results
cquisition factors
Re_fere_nce p tt? System
guidelines |0 oot a ?erns development
i customize, .
and expand T
Project Parameter Calibrated Development
descriptions values producer plans
Knov_vled_ge factors
Application
Cost and schedule
New projects Model estimates
Schedule and execution
manpower constraints

Figure 4 — Graphic template: parametric estimating. (Source: Software Engineering Institute)

Incidentally, these form the basis of the
Capability Maturity Model (CMM), particu-
larly the lower levels of software process
maturity. CMM is about meeting commit-
ments, and one of the key observations is
that it is easier to meet rationally justified
commitments via estimates based on reason
and actual historical performance than to
spend time creating stories about why we are
late, over budget, etc.

With a commitment process and estimation
subprocess in hand, and the admonition to
select a tool that is consistent with both, here
is my checklist of criteria, in priority order.
The items at the top of the list dominate, so
failing those top criteria can disqualify a can-
didate tool from further consideration.

Checklist for Tool Selection

The following items are included on
my checklist of issues I look at when
selecting tools.

1. The underlying algorithm is published
in the public domain.

I am worried about surprises, so I want to
read about the formulas used, assumptions
made, constraints, etc. [am particularly

looking to see if duration = effort/resources.
It is built into every project management
software package (such as Microsoft
Project), and it states that the time it takes to
complete a project is the person-days
required divided by the number of people.
So, if I have a 10-person-day project and 2
people, it would take 5 days. If I had 10
people, it would take 1 day.

If this formula is in the tool, I would have to
reject it, as it is well known that the relation-
ship among duration, effort, and resources is
not linear. It may be true in building con-
struction that doubling the number of carpen-
ters cuts their duration in half, but doubling
the number of programmers probably stops
the software project!

Tools such as SLIM, Price S, and all genera-
tions of COCOMO publish their formulas, so
at least I am not going to be surprised!

2. It accurately estimates completed
projects.

We use a few typical completed projects to
see if the candidate tool estimates them
accurately in retrospect. Clearly, if the tool
cannot accurately estimate our type of

14

Join our free weekly e-mail service, The Cutter Edge: www.cutter.com/consortium/

http://www.cutter.com/consortium/

work, we do not want to use it on real,
future projects.

The process of estimating completed
projects, what Park in the diagram calls
“inverse model execution,” leads right to
the next criterion.

3. I don’t want to subjectively “guess” at
the values of variables.

If the actual project performance does not
equal the estimate then, naturally, I want to
know where I went wrong. Some tools use
scales to assess items such as team experi-
ence, by selecting a number between, say,

1 and 10. There may be text associated with
each value, such as “new team,” “worked
together for many years,” etc. | cannot
measure team experience, I can only guess at
its value. When actual does not equal esti-
mate, I do not know which subjective esti-
mates are off and by how much, so I eschew
them. I only want to work with items that I
can objectively measure during the conduct
of a project. I would be especially disturbed
by long lists of such subjective questions, as
I would have no hope of tying my responses
to actual project performance that I cannot
measure.

4. The assumptions of the tool mirror my
realities.

Estimates are application-area specific (see
Chapter 1 in Measures for Excellence:
Reliable Software on Time, Within Budget by
Lawrence Putnam and Ware Myers, Prentice
Hall, 1992), so we need to be sure that the
candidate tool has been particularized for my
application type (e.g., avionics, process con-
trol, business). It also has to be applicable to
the size, programming language, lifecycle,
and degree of centralization and formaliza-
tion present in my projects. Often these
aspects are not stated in estimation tools, so
they are disqualified from consideration.
One nameless tool uses a lifecycle that I do
not, so I know that the estimates will not
mirror my reality.

5. The tool will not generate an impossible
schedule.

This was a common response to COCOMO
and its progeny. Because it was a formula,
it could compute a duration that was impossi-
ble in empirical terms. That is, it could
compute a duration that had never before

IT METRICS

STRATEGIES

been accomplished by any team anywhere.
Clearly there is a region or range of project
values (duration, effort, rate of adding peo-
ple, quality, and number of features) such
that it is impossible to accomplish a project
with that combination. (See Measures for
Excellence, Putnam and Myers, p. 95.) 1
want to know that set of values so that [am
sure to steer clear. It is an added bonus if the
tool tells me explicitly what the impossible
region is so that I don’t have to spend time
guessing, like playing Minesweeper!

6. The tool takes into account the effects of
schedule compression.

We all know the quip about nine women
making a baby in a month (this is a variant
of duration = effort/resources). In software
projects we are commonly asked to produce
the minimum duration estimate. In other
words, what is the effort required for the
stated requirements such that the project will
finish in the shortest time? Candidate tools
that simply use a formula to compute the
duration (such as the old COCOMO) might
not take into account the nonlinear effect of
schedule compression, that reducing the
duration by 10% can increase the effort by
40%. Trying to reduce schedule by 20% is
even worse. Michael Mah referred to this in
previous issues of ITMS as the 200/20/6x
rule, whereby doubling the effort (200%)
results in only about a 20% schedule com-
pression, but with a severe reliability penalty
— a 6x rise in defects.

One can see, too, that the formula duration =
effort/resources has the effect of not model-
ing compression, which is yet one more rea-
son to avoid tools that use it. One of the
reasons I like tools that model compression
is that we are commonly given the delivery
date during the commitment process, so |
need to be able to ask and answer whether I
can stand (that is, manage) the compression
in the dictated schedule.

7. 1 want a range, not a point, estimate
and the probability of achieving it.

We all know that estimates are most useful if
they give us a range and probability, such as
“There is a 70% chance of slight rain, and a
50% chance of significant rain.” In order to
intelligently make software project decisions
we need the same thing. We need to know
the probability or risk for each feasible band

© 2000 Cutter Information Corp. For subscriptions call +1 800 964 5118 or +1 781 641 5118 1]

http://www.cutter.com/consortium/

[T M

EIRIGS

STRATEGIES

of estimates. This way we can adjust our
input parameters in order to compute not
only an answer about duration, effort, qual-
ity, and features, but also a risk level that the
organization can tolerate. Without the range
and risk level, it’s all or nothing — not a
very rational, or realistic, approach. How do
we know on a point estimate what is the
probability of achieving it?

Conclusion

Whether or not you use my list of criteria, be
sure to list your own before you go shopping
for a macro-estimation tool. Tool vendors
have a technical name for those who seek
tools without stated, written criteria: loose
wallets!

Acknowledgements

This article is based on a presentation as
moderator of the January Maryland Society
for Software Quality Roundtable 2000,
“Help! for estimation.”

References

The following SEI references are often avail-
able for free download on the SEI Web site:
www.sei.cmu.edu/publications/.

McAndrews, Donald. Establishing a
Software Measurement Process. SEI-93-TR-
16, July 1993.

Park, Robert. 4 Manager's Checklist for
Validating Software Cost and Schedule
Estimates. SEI-95-SR-004, January 1995.

Park, Robert. Checklists and Criteria for
Evaluating the Cost and Schedule Estimating
Capabilities of Software Organizations. SEI-
95-SR-005, January 1995.

Park, Robert. Goal-Driven Software
Measurement — A Guidebook. SEI-96-
HBK-002, August 1996.

Park, Robert et al. Software Cost and
Schedule Estimating: A Process Improvement
Initiative. SEI-94-SR-03, May 1994.

Web Sites

www.incose.org/tools/tooltax/costest_tools.
html. Provides an interesting, though
slightly out of date, list of software cost
estimating tools.

www.methods-tools.com/tools/frames_
projmgmt.html. Offers a more up-to-date
list, containing many other tools.

About the Author

Stan Rifkin is a principal with Master
Systems Inc., a firm that offers advisory
services related to software improvement.
He worked at the Software Engineering
Institute on software process improvement,
the American Association for the Advance-
ment of Science as CIO, and the National
Headquarters of the American Red Cross
as the director of systems development.
Mr. Rifkin’s previous articles have appeared
in March and May 2000 issues of ITMS.
Mr. Rifkin can be reached at sr@
Master-Systems.com.

(L) Please start my subscription to /T Metrics Strategies® for one year at $485, or US $545 outside North America.
Phone Megan Nields at +1 781 641 5118, or fax +1 781 648 1950, or e-mail info@cutter.com.
D Please renew my subscription.

Name Q) Payment or purchase order enclosed
Title (] Please bill my organization
(] Charge my Mastercard, Visa, American Express,
Organization Diners Club, or Carte Blanche 220*5ITS
Dept. Card no.
Address Expiration Date
City State/Province Signature
Zip/Postal Code Country Web site: www.cutter.com/itms/
Cutter Information Corp.
Tel. Fax

E-mail

Suite 1, 37 Broadway
Arlington, MA 02474-5552 USA

http://www.cutter.com/consortium/

