
1

How much should we spend on
quality assurance?

Stan Rifkin
Master Systems Inc.
2604B El Camino Real 244

Carlsbad, California 92008 USA
+1 760 729 3388 sr @ Master-Systems.com

Ver. 1.0 – March 28, 2006 – © Copyright Center for Software Engineering at
the University of Southern California unless otherwise shown.

Master Systems Inc. is an affiliate member of the Center.

2

Same question as:

How much quality assurance is enough?
When should we stop testing?
What is the relationship between product
quality and the quality assurance process?

Answer: It depends.

3

Going to speak about a new
approach: value-based

Remarks will be brief.
Reports on the work of Barry Boehm and his PhD student
LiGuo Huang, who graduates in a few months.
Paper will be published in IEEE Software this year.
Further results will be presented at the International
Conference on Software Engineering in May.
Codification of what some of us already know & do.
A promising avenue of research, already with some
concrete application.
A way to think.

The future!

4

CSC Balanced Scorecard Process

Business
Goals &

Expectations

Commitments
38.5%

Commitments
38.5%

Quality
14%

Quality
14%

Customer
Satisfaction

31.3%

Customer
Satisfaction

31.3%

Future Value
6.3%

Future Value
6.3%

Productivity
9.9%

Productivity
9.9%

Most critical

Lower priority

Weighting ensures that appropriate
attention is given to your

most critical goals and expectations

© Copyright Computer Sciences Corp.

5

CSC Balanced Scorecard Process

Brilliant process, based on a clever,
seamless synthesis of many best practices.
BUT, what do I do every day to achieve
the results?
What actions should I take in order to
achieve the goals?

6

Enter: Value-based software
engineering

The problems it is trying to solve:
Canceled projects – after large investment.
Inefficient projects (e.g., Death March)

Limitations:
Method independent.
Cannot solve all problems.
More notional than detailed today, in general.

Solution approach
Step-by-step directions for selecting important aspects of the
product, process, technology, and human resources.
Step-by-step guidance on what to do to achieve win-win
outcome.

7

Example: Value of added testing

Source: COCOMO II values for RELY, the reliability required of the software product.

Reliability/Test Time Tradeoff

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

0 10 20 30 40 50 60

Added Test Time (%)

M
e
a
n

T
i
m
e

B
e
t
w
e
e
n

F
a
i
l
u
r
e
s

(
H
o
u
r
s
)

34 Years

One Year

8

What would you do with the
additional test time?

 Table 1. Defect Removal Investment Rating Scales
Rating Automated Analysis Peer Reviews Execution Testing and Tools

Very Low Simple compiler syntax checking. No peer review. No testing.
Low Basic compiler capabilities Ad-hoc informal walkthroughs Ad-hoc testing and debugging.

Nominal Compiler extension
Basic requirements and design

consistency

Well-defined sequence of
preparation, review, minimal follow-

up.

Basic test, test data management, problem
tracking support.

Test criteria based on checklists.
High Intermediate-level module and

inter-module;
Simple requirements/design

Formal review roles with well-trained
participants and using basic

checklists, follow up.

Well-defined test sequence tailored to
organization.

Basic test coverage tools, test support system.
Basic test process management.

Very
High

More elaborate
requirements/design

Basic distributed-processing and
temporal analysis, model

checking, symbolic execution.

Basic review checklists, root cause
analysis.

Formal follow-up using historical data
on inspection rate, preparation rate,

fault density.

More advanced test tools, test data preparation,
basic test oracle support, distributed monitoring

and analysis, assertion checking.
Metrics-based test process management.

Extra
High

Formalized specification and
verification.

Advanced distributed processing

Formal review roles and procedures.
Extensive review checklists, root

cause analysis.
Continuous review process

 improvement.
Statistical Process Control.

Highly advanced tools for test oracles, distributed
monitoring and analysis, assertion checking

Integration of automated analysis and test tools.
Model-based test process management.

Source: How Much Software Assurance is Enough: A Value-Based Approach, LiGuo Huang & Barry Boehm, IEEE
Software, 2006, to appear.

9

ROI on VBSE testing: There is an
optimum, given the goal

Source: Huang & Barry Boehm, op. cit.

10

COCOMO II:

COQUALMO:

Value-Based:

Value-Neutral:

Market Risk:

0

1.0

3.0

3.0

.008

34

.125

.54

0.975

.30

54

.06

.30

.30

1.0

Added % test time

Pa(L)

Sa(L): Pareto

Sa(L): Linear

REm

12

.475

1.68

2.33

.027

22

.24

.96

1.65

.09

Combined Risk Exposure

0

0.2

0.4

0.6

0.8

1

V L L N H V H RELY

RE =
P(L) * S(L)

Market Share Erosion Value-based Testing Value-neutral Testing

Sweet Spot

Comparing Value-Based Testing
vs. Value-Neutral Testing

Source: Huang & Boehm, op. cit.

11

Loss due to inadequate plans

Time and Effort Invested in plans

Risk Exposure
=

P(L) * S(L)

high P(L): inadequate plans
high S(L): major problems

(oversights, delays, rework)

low P(L): thorough plans
low S(L): minor problems

Example RE Profile: Planning Detail

Source for this slide and the following four: Many of Barry Boehm’s presentations and last year’s SPIN presentation by
Stan Rifkin, “What is the best way to develop software? Continuing the conversation about agility and plan-driven
methods,“ June 2005.

Risk exposure = Sum over all events of
[Probability of event x size (impact) of event]

12

- Loss due to inadequate plans
- Loss due to market share erosion

Time and Effort Invested in Plans

RE =
P(L) * S(L)

low P(L): few plan delays
low S(L): early value capture

high P(L): plan
breakage, delay
high S(L): value
capture delays

high P(L): inadequate plans
high S(L): major problems

(oversights, delays, rework))

low P(L): thorough plans
low S(L): minor problems

Example (cont.)

13

low P(L): thorough plans
low S(L): minor problems

- Sum of Risk Exposures

Time and Effort Invested in Plans

R
E

 =
 P

(L
) *

 S
(L

)

low P(L): few plan delays
low S(L): early value capture

high P(L): plan
breakage, delay
high S(L): value
capture delays

Sweet Spot

high P(L): inadequate plans
high S(L): major problems

(oversights, delays, rework)

Example RE Profile:
When to Ship

14

Time and Effort Invested in Plans

R
E

 =
 P

(L
) *

 S
(L

)

Mainstream
Sweet

Spot

Higher S(L):
large system rework

Plan-Driven
Sweet Spot

Plan-Driven Home Ground

15

Time and Effort Invested in Plans

R
E

 =
P

(L
) *

 S
(L

)

Mainstream Sweet
Spot

Lower S(L):
easy rework

Agile Sweet
Spot

Agile Home Ground

16

Another example: Stakeholder
synchronization vs. heads-down work

If I synchronize often with stakeholders it
is costly and I avoid rework.
If I work with my head down I accomplish
a lot, don’t have to give “presentations,”
and I might be off-track for quite awhile.

Is there an optimum mix?

17

Assume this life cycle
Process Milestones Software Development Activities

Initiate project Acquire system requirements

Requirement elicitation meeting SCS define acceptable & desired
values for Q-attributes Win-Win negotiation

Internal prototype evaluation Risk analysis &
architecture/technology
evaluation External prototype evaluation

Identify conflicting Q-attributes
& perform tradeoff analysis

SCS adjust acceptable values for
Q-attributes Stakeholder renegotiation

System top-level design and
initial Feasibility Rationale
Description (FRD)

System top-level design

Architecture options internal review
LCO Review

Architecture options external review

Requirement elicitation meeting SCS refine acceptable & desired
values for Q-attributes Win-Win negotiation

System detailed design and
detailed Feasibility Rationale
Description (FRD)

System detailed design & FRD

Selected architecture internal review
LCA Review

Selected architecture external review

Core capability implementation Core capability implementation

Value-based core capability
testing Internal core capability testing

Internal core capability demo
CCD

On-site core capability demo

Remaining features
implementation Complete system implementation

IOC Acceptance Review On-site System Acceptance Review

Legend:
Life Cycle Objective (LCO)
Life Cycle Architecture (LCA)
Core Capability Demo (CCD)
Initial Operational Capability
(IOC)Source: Applying the

Value/Petri Process to
ERP Software
Development in China,
LiGuo Huang et al.,
ICSE 2006.

18

ROI on internal vs. external life cycle
activities

 Process Activity
Combinations ROI

1 LCO(i)\ LCA(i) \ CCD(i) \ IOC(s) —

2 LCO(s)\ LCA(i) \ CCD(i) \ IOC(s) 6.2

3 LCO(i)\ LCA(s) \ CCD(i) \ IOC(s) 2.4

4 LCO(i)\ LCA(i) \ CCD(s) \ IOC(s) 0.1

5 LCO(s)\ LCA(s) \ CCD(i) \ IOC(s) 6.2

6 LCO(s)\ LCA(i) \ CCD(s) \ IOC(s) 5.8

7 LCO(i)\ LCA(s) \ CCD(s) \ IOC(s) 2.3

8 LCO(s)\ LCA(s) \ CCD(s) \ IOC(s) 5.5

Source: Applying the Value/Petri Process to ERP Software Development in China, LiGuo Huang et al., ICSE 2006.

19

4 + 1 Framework

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

How do the values
vary with other

changes in other
variables?

How do values
impact decision

choices?

What values are
important & to

whom?
How is success

assured?

What can I control
that impacts value?

How do
dependencies affect

value realization?

Adapted from B. Boehm and A. Jain, “An Initial Theory of
Value-Based Software Engineering,” in S. Biffl, A. Aurum, B.
Boehm, H. Erdogmus, and P. Gruenbacher (eds), Value-
Based Software Engineering, Springer, 2005, pp. 15-37.

20

7 Step process of VBSE

Source: LiGuo Huang, private communication.

21

Utility theory (for money)

UTILITY

CUMULATIVE WEALTH

Diminishing marginal returns

Step 3

22

Other utility curves
Market

Share

Loss

VL(Td)

Critical
Region

Mission

Value

Loss

VL(Td)

System Delivery Time Td Tevent

User

Value

Loss

VL(Td)

System Delivery Time Td

(a) (b)

(c)

System Delivery Time Td

Value Loss vs. System Delivery Time:
(a) Marketplace Competition (Internet Services, Wireless Infrastructure);

(b) Fixed-schedule Event Support; (c) Off-line Data ProcessingSource: Huang &
Boehm, op. cit.

Step 3

23

4 + 1 Framework

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

How do the values
vary with other

changes in other
variables?

How do values
impact decision

choices?

What values are
important & to

whom?
How is success

assured?

What can I control
that impacts value?

How do
dependencies affect

value realization?

Should each peer review be
like the next?

Should each test be like the
next?

Should each external &
milestone review be like the
next?

