
When the project absolutely must get done:
Marrying the organization chart with the precedence diagram

Stan Rifkin

Master Systems Inc.
PO Box 8208

McLean, Virginia 22106 USA
+1 703 883 2121

sr@Master-Systems.com

1 ABSTRACT
Very little is new in project planning, but this is! We pre-
sent a technique to marry the organization chart with a
project’s task precedence diagram. This permits us to
simulate the project at a micro, project-specific level
never before achieved. We can perform “what-if”
scenarios related to organization structures, the deploy-
ment of specific individuals and skills, and the structure
of information flow and exception-handling in a project.
The tool used, ViteProject, was developed over the last
ten years in a Stanford University laboratory, where sub-
stantial results have been achieved when applied to design
activities other than software. We present our real-world
experience with several software projects, where it has
improved project visibility and allowed us to rationally
optimize projects in a way hitherto impossible.

Keywords
Project management, micro-estimation, project simulation

2 INTRODUCTION
When a project absolutely must be done, we have at our
disposal few tools to help us optimize the project and
experiment with options for success. Macro estimation
tools, such as Quantitative Software Management’s
(QSM’s) SLIM (Software LIfecycle Management) suite,
helps us find the bands or range of practicality of our
plans, and to its credit does not give us a point estimate
but rather a range of, say, durations and associated prob-
abilities of achievement. Our task is to organize the pro-
ject so that it takes the lowest duration in the range, one
that macro estimation tools do not address.

ViteProject is the result of ten years of Stanford Univer-
sity research into how to best optimize a particular pro-
ject. It begins with a macro estimate, like that supplied by
QSM’s SLIM Estimate or COCOMO II, a chart showing
the precedence of the major activities and milestones, and

an organization chart of the project (it is not the authority
hierarchy, but rather the exception handling hierarchy).

With this information and a little more, we can examine
trade-offs and their impact on duration, cost, features, and
quality. An example set of trade-offs, some of which will
be explored in this paper, is:

1. What is the effect of adding a deputy software project
leader? Does the additional expense justify the
reduction in duration?

2. What is the effect of placing subject matter experts or
more experienced software engineers on the project?
Is it more cost effective to have expert project man-
agement or expert programming?

3. If the pre-release error rate doubles, then what is the
right tactic: drop everything and fix errors or keep on
developing, fixing, testing?

4. How much e-mail and voice messages are missed at
the height of the project?

5. What is the proportion of work, re-work, and idle
waiting time in each scenario?

6. Are any particular process improvements more cost-
effective than another on this project?

3 ESTIMATING KNOWLEDGE WORK
DURATION

Predicting the duration of a knowledge team’s project
work has always been a challenge. While there is a tradi-
tion of careful and accurate estimation for, for example,
building construction duration, there is nothing of the
kind for building design, essentially a knowledge team’s
work. One cannot use Gersick’s admonition to set dead-
lines and then the team can work to them. [5] We have to
have a way to know what reasonable deadlines are.

One can use the insight that there is an inextricable inter-
dependence between structure of the work and structure
of the team. That is, the structure of the work is optimal
relative to the particular structure of the team, and the
structure of the team is optimal relative to the particular
structure of the work. Accordingly, one size does not fit

all, structures ought to be tailored to the work. We are
taking an additional liberty, an additional degree of free-
dom, by stating that, symmetrically, the work should be
structured according to the team. This last is the new bit.

What is the best way to organize? “It depends,” answers
the (contingency) theorist. “Depends on what?” The stan-
dard responses [1] are organizational complexity (hori-
zontal, vertical, and spatial differentiation), formalization,
centralization, degree of coordination and control,
management and leadership style, organizational climate,
size and skill capabilities, environment, technology, and
strategy.

What makes knowledge team work different than, say,
construction team work? What makes it difficult to esti-
mate the former and perhaps not the latter? One view is
that knowledge teams face more uncertainty because of
the intangible nature of their work, less is physical and
visible, therefore less is known, more is uncertain. This
description of knowledge work is basically what Gal-
braith calls the information processing problem: “the
greater the uncertainty of the task, the greater the amount
of information that has to be processed between decision
makers.” [4, p. 28].

Traditional design of the organization structure is an
artistic balance that strives to match the information proc-
essing requirements, which are predominately contingen-
cies, to the information processing capacity of the struc-
ture. Accordingly, in the traditional stance, the external-
ities are given and our job is to artfully design a structure
that matches or fits them. And we measure the success of
our organizational design job based on our operationali-
zation of “fit.”

The creation of a new field of study, computational and
mathematical organization theory (CMOT) [2,3], has
called into question such art. It tries to provide more
information so that, in our case, organizational structure
can be more objectively measured and optimized. For
example, wouldn’t it be attractive if we could design the
structure of an organization such that given the external-
ities one design got more work accomplished than the
other designs we could think of? Wouldn’t this provide
something of a more tangible measure of whether we had
achieved our objective?

4 AIM
Accordingly, the aim of the research and application
described here is to measure the structure of organiza-
tional design with respect to the specific work to be
accomplished by the software organization under study.
The work is described in the traditional way: a task prece-
dence diagram of the activities and milestones to be
accomplished and an estimate the effort required for each
activity. And the organization is described in a traditional

hierarchy chart, but this one describes exception-handling
and not authority per se. One of the major breakthroughs
(of the approach to be described) is to connect each per-
son (actor) in the exception-handling hierarchy to the
activities for which he/she is responsible. Once the topol-
ogy of the project is mapped to the structure of the excep-
tion-handling, then a simulation of the work of the project
team can be undertaken and the usual measures of project
performance collected and compared: duration, verifica-
tion risk (the risk that quality problems escaped into the
work products, which is a surrogate for product quality),
throughput, and cost. Now we can compare various con-
figurations of the work with various configurations of the
hierarchy and use data to guide our definition of “fit” or
optimality.

The challenge is the simulation. One must carefully read
the contingency theory literature and try to operationalize
it. For example, the literature might suggest that formal-
ization of routine tasks reduces the demand on the infor-
mation processing mechanism of a structure, all other
things equal. It makes sense on the surface that increased
formalization is a method of spreading information down
the hierarchy so that the hierarchy does not have to pro-
cess information about tasks for which formal methods
exist. But how much formalization begets how much
decrease in information processing demands? And how
are formalization and information processing demands
measured and represented?

Computational and mathematical organization theory is
an exciting field precisely because it addresses in concrete
terms what we all think we understand based on discourse
alone. While we may think we understand contingency
theory, we lack variables sufficiently concrete to actually
demonstrate our understanding and test hypotheses in real
or simulated work situations. All of the contingency con-
structs mentioned so far are too ethereal to be able to posit
and measure the values of variables in the field (even size,
in the contingency theory sense, is about bigness and span
of control, and we don’t know what that means in terms
we can measure, such as number of employees).

5 ENTER VDT AND VITEPROJECT
Staff members of the Center for Integrated Facilities
Engineering in the Civil Engineering Department in Stan-
ford University’s School of Engineering read everything
written on project management in order to try to under-
stand and estimate the work of engineering design teams.
The Stanford researchers found nothing they could use in
the project management literature, nothing that explained
the variation in team performance they had subjectively
observed. They turned to the literature on organizations
and resonated with contingency theory and its information
processing view. The challenge then was to reify the con-
structs in such a way that values could be verified during
field tests on real projects.

The idea struck them that perhaps they could model an
organization at work by simulating the passage of work
“packets” through the network of activities described by a
traditional task precedence diagram and linking each
activity to the actor responsible for that activity. This way
elements important to project success could be made visi-
ble. In other words, this would translate contingency
theory constructs into concrete project variables. And the
notion of “fit” would be reified to normal project success
criteria, such as duration, cost, and quality.

The Stanford researchers first developed Virtual Design
Team (VDT) [6], to be used in educational settings, and
then a commercial product, ViteProject [7]. The displays
presented here are from ViteProject.

The translation from theory to simulation is no small feat
because of the granularity needed for simulation, which
granularity is nearly always absent from theory and even
experiments that test such theories. The core of CMOT is
the translation process, a subject beyond the scope of this
paper.

A few details of the translation may suffice to give the
reader a sense of the magnitude of the task.

1. To model “change propagation” or “failure depend-
ence.” When projects are “fast-tracked,” that is, com-
posed of several parallel, simultaneous activities,
information or defects found in down-stream activi-
ties needs to be communicated to other (possibly still
up-stream) dependent tasks. In other words, the
simulator needs to make work that is not on the
original precedence diagram. The solution was to
create activities composed of sub-activities. The
simulator assumes there are 20 sub-activities per
activity, and that each sub-activity takes 1/20 of the
total effort. At the end of each sub-activity the simu-
lator checks to see if it’s possible that an exception
occurred. This is based on a percentage entered by
the user/modeler. If an exception has occurred, then
the simulator decides at random whether the failure
should be reworked, quickly “patched,” or ignored.
Only the first alternative substantively changes the
product, but at the expense of effort. If there are
many selections of the last two alternatives (patched
or ignored) then product/outcome quality would be
questionable.

2. To model centralization. Centralization refers to the
degree to which exceptions are handled centrally vs.
locally. If exceptions are handled centrally, then often
there is work not shown on the precedence diagram
to communicate and propagate the exception condi-
tions upwards and the decisions downward. Again,
the simulator will be asked to insert work where none
was hitherto indicated. If a project has a high degree
of centralization, then it is possible that the actors up
the hierarchy get backlogged and cannot respond in
time, a delegation by default. Also, central decision-
makers tend to have greater expertise and a broader
context for making decisions, so the quality of their
decisions is likely to be better than local ones. So, the
simulator now has numerous behind-the-scenes tasks:
generate work that is not shown on the precedence
diagram: model in-baskets so that backlog can be
illustrated, and modify decision quality based on the
place in hierarchy of the decision-maker.

3. To model formalization. This contingency variable
refers to “the likelihood that an actor who needs to
exchange information with another actor will wait for
a formally scheduled meeting versus initiating an ad
hoc communication seeking the information needed.”
[7, p. 3-34] Again, the simulator has to create work
not on the precedence diagram to model the level of
communication requested. This is done primarily by
affecting the in-baskets of those with whom commu-
nication is desired.

6 EXAMPLE
Baseline
A concrete example may be the best way to illustrate the
translation from theory to simulator. Imagine a simple,
though realistic, project with an exception hierarchy of:

Project Manager

Tech Lead

Programmers +
Analysts

Business
Analyst

Quality
Assurance/

Testing
And further imagine a precedence diagram of activities:

Start
System
Piloted/

Rolled-Out
Requirements Tech Analysis +

Design
All Units Coded

+ Tested
User Accepts

System

Dev req PA

Dev req BA

Architect
solution BA

Evaluate
alternatives +

select

Rev + execute
test plans QA

Write Code

Rev + execute
test plans TL

Write + rev test
plans BA

Write + rev test
plans PM

Roll-out PM

Roll-out TL

Roll-out BA

Roll-out QA

Roll-out PA

Write UAT plans
BA

Execute UATs
PA

Review UAT
plans TL

Review UAT test
cases PM

Review UAT
results QA

It is an excerpt of a standard software development pro-
ject. The milestones run along the top and the activities to
achieve each milestone are performed in parallel between
each milestone. This example assumes that 50,000 lines
of code need to developed to deliver specific functionality
for a business application. We have made additional
assumptions about the process maturity of the team and
enveloping organization, and we have made an assump-
tion about the maximum rate at which staff is available
for the project and the rate at which they can be absorbed.

Our job is to optimize the fit between the organization
structure and the work to be accomplished.

In order to proceed, we have used Quantitative Software

Management’s SLIM-Estimate macro software project
estimation tool [8] to estimate the overall duration, the
duration and effort for each milestone, and the peak num-
ber of staff required for each milestone. We have than
allocated the effort between milestones to individual job
types in accordance with the real project that this one mir-
rors. For example. There are four people in the “Program-
mers + Analysts” box and 1.4 full-time equivalents in the
“Quality Assurance/Testing” one.

Our next step is to connect a responsible party to each
activity:

Start
System
Piloted/

Rolled-Out
Requirements Tech Analysis +

Design
All Units Coded

+ Tested
User Accepts

System

Dev req PA

Dev req BA

Architect
solution BA

Evaluate
alternatives +

select

Rev + execute
test plans QA

Project Manager

Tech Lead

Programmers +
Analysts

Business
Analyst

Quality
Assurance/

Testing

1.9 1

0.6

4

Write Code

Rev + execute
test plans TL

Write + rev test
plans BA

Write + rev test
plans PM

4

1.4
1

1
0.9

4

1.4

1

11

Roll-out PM

Roll-out TL

Roll-out BA

Roll-out QA

Roll-out PA

0.7

1

1

1.4
4

Write UAT plans
BA

Execute UATs
PA

Review UAT
plans TL

Review UAT test
cases PM

Review UAT
results QA

The barely-readable figures on each arc from an actor to
an activity is the number of full-time equivalent actors
assigned to activity. In accordance with the actual project,

we have a pool of actors, of which only a subset are
assigned to a particular activity at any one time.

Next we use ViteProject to simulate the work flow im-
plied by this configuration of actors and activities as a
way to baseline our model and compare it with the SLIM
model.

Results
The next steps are divided into two activities: calibration
and then optimization. Calibration is getting the Vite-

Project description and results to match SLIM’s. Once
that is done we try to reduce the duration by changing
those variables that we can, and we use information
ViteProject gives us to do that.

Here are the ViteProject results obtained in this case:

The first five scenarios capture the calibration and the rest
the optimization.

One can make several observations at once:

1. The duration predicted by traditional project man-
agement tools (e.g., Microsoft Project), that is, those
that calculate the critical path (the CPM Duration
column in the table) is inaccurate with respect to
capturing what really happens on a project.

2. SLIM estimated that the project would take 386 days
at a cost of US$605.4K. Using ViteProject we have
reduced them to 306 days and US$480.9K. These
represent savings of 26% in duration and in cost.
Clearly, one can save duration AND cost!

The rest of the paper explains the calibration and optimi-
zation steps, all guided by displays generated by
ViteProject.

Calibration
SLIM, like any other macro estimation tool, builds in
some of the variables that ViteProject simulates, such as
error rates between activities, communications overhead,
the effects of experience in role, and the effects of cen-
tralization and formalization. We must, therefore, factor
those variables out of the SLIM estimate and make them
explicit in our ViteProject model.

The first change is to reflect centralization and formaliza-
tion. Centralization is the degree to which exception han-
dling is conducted up the hierarchy, as opposed to locally,
nearest to the place in the organization where the excep-
tion arose. Typically in software projects and organiza-
tions exception handling is responded to locally, not cen-

trally. The trade-off here is that central exception han-
dling usually yields higher quality because of a more
global view, but takes longer.

Formalization characterizes communication: is via formal,
written memos, or via less formal hallway conversations,
for example. Again, typically in software projects and
organizations formalization is low. The trade-off is simi-
lar to that for centralization: low formalization means that
not everything that needs to be known will be communi-
cated up and therefore, especially in parallel tasks, there
will be knowledge that needs to be known in one fork that
is not communicated there and that will require rework
when it does become known. The purpose of more formal
communication is make information more globally avail-
able – at the expense of speed.

Both SLIM and ViteProject use a default experience
level. For this particular project the project leader has
high experience and the quality assurance team has low
experience. This is based on the real project being mod-
eled.

Those adjustments comprise Scenario 2, above. Scenario
3 models the effects of one type of error. There are two
kinds of errors modeled in ViteProject:

• Functional errors – Made by each actor working on a
specific activity that is caught during that activity and
may extend it, but no other activity.

• Project errors – The error is caught late in the cycle
and causes rework to previous, upstream activities.

Scenario 3 models the effect of a 20% rework rate applied
to an activity. The 20% figure reflects actual project expe-

rience in this case. It means that one in five sub-tasks
internal to an activity have to be reworked. The identifi-
cation of such errors might be from inspections or testing.

Scenario 4 reflects the observation that adding the effects
of centralization, formalization, experience, and func-
tional errors has increased the duration 1/3. This can be
illustrated below, in the figure for Scenario 6. Note that
each horizontal histogram represents an activity and is
composed of four components: work, rework, coordina-
tion, and waiting time. SLIM represents this 4-tuple as a
single item: work. Our task is to tease apart the SLIM
work unit into its four constituents. The increased dura-
tion is the effect, so we reduce the effort by 1/3 to get
back to the baseline estimate of SLIM. That is, we have
set the ViteProject work to be 2/3 of the SLIM estimate
and the sum of rework, coordination, and waiting time is
the remaining 1/3.

The SLIM estimate was 386 days and ViteProject now
obtains a simulated duration of 381, close enough for real
world application.

Scenario 5 is our final attempt to get close to the original
SLIM estimate by adding the effect of project errors at the
rate of 20% for those tasks likely to require extensive re-
work. This brings the simulated duration to 383 days vs.

SLIM’s 386 days. The three-day difference is insignifi-
cant for our purposes.

What if questions
Before we entertain optimization we examine a question
that the project leader has asked us: what would be the
effect if the pre-release error rate were double the typical
and what would be a reasonable antidote? The reason the
PL asked this question is simply because he had early
indications that the prerelease error might, in fact, become
2X the normal experience.

Scenario 6 shows the effects of doubling the functional
error rate. Essentially, the duration increases by about
17% and the costs by about 19%. Roughly, the project
will slip about 20% of its schedule and effort.

Where to begin searching for an antidote?

If one looked no further than which type of actor con-
sumed the greatest duration, then that might be a start. As
the figure below indicates, programmer/analysts are by far
the most used actors. What would be the effect of making
them more efficient by increasing their experience to high
within the same pay scale? This would be equivalent to
selecting programmers in the pay range with the greatest
process maturity, for example.

0 100 200 300 400 500 600 700

Guidance Team

Project Manager

Tech Lead

Quality Assurance /Testing

Business Analyst

Programmers + Analysts

FTE days

Actor Work Breakdown
Waterfall SW Demo - Scenario-6 - Double pre-release failure rate

Work Rework Coordination Decision Wait
Scenario 7 increases PA experience from the default of
medium to high and the result is to get back virtually all
of the loss of a 2X pre-release failure rate.

Optimization
We now enter the more interesting phase: how to reduce
duration and costs by improving efficiency and quality.

If structure and work are inter-related, what would be the
effect of restructuring the work? To illustrate a possibil-
ity, we removed the integration test milestone because it
synchronizes according to the slowest completion dura-
tion and we can think of a way that once some of the
actors have completed their integration test tasks they

could go directly to system test. For example, those writ-
ing test cases do not have to wait for a synchronizing
activity like completion of a milestone to proceed to
working on the next milestone.

The effect of removing the integration test milestone is
none because we are still waiting for the slowest perform-
ers! The overlap we might have achieved does not materi-

alize because the actors with the longest duration during
integration testing are also those with the longest duration
of the next activity, namely system testing.

In the next scenario we look at communication backlogs
because they so profoundly affect quality and quality
reverberates throughout a project.

0

1

2

3

4

Jan 99 Apr 99 Jul 99 Oct 99 Jan 00

B
ac

kl
og

 (w
or

ki
ng

 d
ay

s)

Actor Backlog
Waterfall SW Demo - Scenario-8 - Normal failure rate; removed milestone

Business Analyst
Programmers + Analysts
Project Manager
Quality Assurance /Testing
Tech Lead

The figure indicates that PAs and quality assurance ana-
lysts are missing 3-4 days of messages during the middle
of the project (centered around July). It would be natural
to add a PA and QA FTE during those peak periods to see
the effect.

Adding such resources reflects two fundamental assump-
tions that are realistic for this modeled projects:

1. Resources are available for relatively short durations
(presumably from a pool).

2. There is no significant ramp-up or learning curve
time. This is realistic in this case because the work
was subdivided in such a way that application-
specific knowledge was not required for some tasks
in the short-run.

The result of these small additions are reflected in
Scenario 9: the duration reduces about 50 days and the
cost only goes up about US$2-3K. Clearly, we wish we
could buy 50 days of schedule for US$3,000!

Now the situation with backlog is:

0

1

2

3

4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

B
ac

kl
og

 (w
or

ki
ng

 d
ay

s)

Actor Backlog
Waterfall SW Demo - Scenario-9 - + 1 QA, + 1 PA

Business Analyst
Programmers + Analysts
Project Manager
Quality Assurance /Testing
Tech Lead

It looks like programmer/analysts are still backlogged
around the second week in May. We look at the Gantt
chart and see that that is during coding, so we add another

programmer to that period alone.

The result is Scenario 10, where we have gained another
20 days of schedule for about US$1K increase in cost.

The backlog situation now stands at:

0

1

2

3

4

5

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
B

ac
kl

og
 (w

or
ki

ng
 d

ay
s)

Actor Backlog
Waterfall SW Demo - Scenario-10 - + 1 PA during most intense coding

Business Analyst
Programmers + Analysts
Project Manager
Quality Assurance /Testing
Tech Lead

Clearly the technical lead is backlogged now. We increase
his skill level to see its effect, which is Scenario 11. This
scenario saves another seven days of duration and also

saves about US$5K because the tech lead’s subordinates
do not have to wait so long for his decisions.

The situation with backlog now is:

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

B
ac

kl
og

 (w
or

ki
ng

 d
ay

s)

Actor Backlog
Waterfall SW Demo - Scenario-11 - Increased TL skill & pay

Business Analyst
Programmers + Analysts
Project Manager
Quality Assurance /Testing
Tech Lead

While there is still room for improvement, the backlogs
are pretty even and they are acceptable to the project
team.

7 CONCLUSION
ViteProject opens the door to a level of specificity never
before possible. It is a member of emerging tools in the
category of computational and mathematical organization
theory. It is based on a solid foundation of theory (contin-
gency theory and the view of the organization as an
information processing entity) and has proven itself in
field trials on real software projects.

ACKNOWLEDGEMENTS
I gratefully acknowledge the pioneering work of Ray
Levitt and John Kunz at Stanford, and of Bob Drazovich
of Vité.

REFERENCES
1. Burton, Richard M., & Obel, Børge. (1998). Strategic

organizational diagnosis and design: developing

theory for application (2nd ed.). Boston: Kluwer.

2. Carley, Kathleen, & Prietula, Michael. (Eds.). (1994).
Computational organization theory. Hillsdale, NJ:
Lawrence Erlbaum.

3. Computational & Mathematical Organization
Theory. Norwell, MA: Kluwer. [Four issues per year,
begun in October, 1995, ISSN 1381-298X]

4. Galbraith, Jay. (1974). Organization design: an
information processing view. Interfaces, 4(3), 28-36.

5. Gersick, Connie. (1988). Time and transition in work
teams: toward a new model of group development.
Academy of Management Journal, 31(1), 9-41.

6. Jin, Yan, & Levitt, Raymond. (Fall, 1996). The vir-
tual design team: a computational model of project
organizations. Computational & Mathematical Or-
ganization Theory, 2(3), 171-196.

7. Levitt, Raymond. (1998). The ViteProject handbook:
a user’s guide to modeling and analyzing project
work processes and organizations. Palo Alto: Vité.

8. Putnam, Lawrence H., & Myers, Ware. (1992).
Measures for excellence: reliable software on time,
within budget. Englewood Cliffs: Prentice-Hall.

